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Problems of the modes of loss of stability of a three-layer spherical shell, consisting of thin external layers and a transversely 
soft filler of arbitrary thickness, which is under conditions of a uniform external pressure, are considered. The two-dimensional 
equations of the Kirchhoff-Love theory of the moderate flexure of thin shells are used. These equations are set up for the external 
layers, taking account of the interaction with the filler and, in the case of the filler, using the geometrically non-linear equations 
of the theory of elasticity, which correspond to the introduction of the assumption that the stretching deformations are small 
and the shear deformation are finites, which enables the purely shear modes of loss of stability in the filler to be described correctly. 
An exact analytical solution is found for the problem of an initial centro-symmetric deformation of a shell, which depends linearly 
on the external pressure. It is shown that the three-dimensional equations for the filler, which have been linearized in the 
neighbourhood of this solution, can be integrated with respect to the radial coordinate, and reduce to two two-dimensional 
differential equations, in addition to the six equations by which the neutral equilibrium of the external layers is described. It is 
established that the system of eight differential equations of stability, constructed for a shell with isotropic layers, when new 
unknowns in the form of scalar and vortex potentials are introduced, decomposes into two unconnected systems of equations. 
The first of these systems has two forms of solutions by which the shear modes of loss of stability are described for the same 
value of the critical load. A mixed flexural mode, the realization of which is possible for certain combinations of the governing 
parameters of the shell for high values of the external pressure compared with the shear modes, is described by the second system. 
© 2005 Elsevier Ltd. All rights reserved. 

It was shown in [1] that, under the action of a uniform external pressure, the realization of a purely 
shear mode of loss of stability is also possible in a three-layer ring for certain combinations of the 
governing parameters in addition to a composite flexural mode [2]. The beginning of this process is 
associated with a rotation of one of the supporting layers with respect to the other, solely because of 
a transverse shear deformation which is constant in a peripheral direction. A more detailed study of 
this problem, carried out in a geometrically non-linear formulation, showed [3] that, after crossing the 
shear branching point, which is located in the initial linear section of the solution concerning axisymmetric 
deformation, when the external pressure is increased furthers, the deformation of the ring, while 
remaining axisymmetric, is accompanied by a further mutual convergence of the external layers because 
of the increasing deformations of the transverse compression of the filler, with their simultaneous mutual 
rotation. The final loss of stability of the ring by virtue of the characteristic of the stress-strain state in 
the shear branch of the solution, which has been noted, can apparently only occur through a mixed 
flexural-shear mode [4, 5]. 

The results in [6] have proved to be important for analysing the shear modes of three-layer structures. 
According to these results, the stability equations, derived earlier ([7, 8], etc.) and used in [1-3], contain 
only secondary parametric terms of the description and development of shear modes. The principal 
reason for the realization of these modes when there are no subcritical transverse shear stresses lies in 
the occurrence in it of subcritical compressive stresses in a transverse direction and, for the correct 
description of these modes in the unperturbed state, it is necessary to assume that the transverse shears 
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in the filler are finite. It is sufficient for this purpose to retain the non-linear terms in the tangential 
components of the displacements in the expression for the transverse compression of the filler. 

In this connection, the problems of the modes of loss of stability of a three-layer spherical shell under 
a uniform external pressure studied in this paper are, unlike in the alternative approach [3], based on 
the use of more accurate equations which, as regards their accuracy and content, fully correspond to 
both the requirements mentioned above as well as to the requirements formulated earlier in [5]. 

1. G E O M E T R I C A L L Y  N O N - L I N E A R  E Q U A T I O N S  OF THE I M P R O V E  
T H E O R Y  OF S P H E R I C A L  S H E L L S  W I T H  A T R A N S V E R S E L Y  SOFT 

F I L L E R  OF A R B I T R A R Y  T H I C K N E S S  

Consider a closed three-layer spherical shell consisting of two load-bearing layers with thickness 2t(k) 
(k = 1 corresponds to the lower layer and k = 2 to the upper layer) and a transversely soft filler of 
thickness 2h. We relate the middle surface of the filler o, which has a radius R, to a geographical system 
of coordinates, that is, to the angles of latitude 0 (0 _< 0 < 2rt) and longitude ¢p (-re < q) < rt). Assuming 
that the materials of the load-bearing layers and the filler are orthotropic and that the axes of 
orthotropism coincide with the directions of the coordinate lines of the chosen system of coordinates, 
we denote the elastic characteristics (the moduli of elasticity and Poisson's ratios) by E~I k), E(2 k), G ~  ), 
v~ k), V(zk)and the moduli of elasticity in the direction of the normal to the surface o and the transverse 
shear moduli of the filler by E3, G13, G23. 

If the space of the filler is referred to a triorthogonal system of coordinates 0, ¢p and z, which is normally 
associated with the surface o, and a dimensionless radial coordinate is introduced into the treatment 
instead of the transverse coordinate z ( -h  < z < h), then the Lam6 parameters at an arbitrary point of 
the filler, which is spaced at a level z from o, will have the form/41 = 9R, He = pRsin0. At the same 
time, the following kinematic relations in the three-dimensional theory of elasticity can be written for 
the filler 

2eoz = ROp~,p) + oWO----~' = 

OW 1 F(aUl 2 (aV'~21 
pRsin0bcp + R b--p \ p )  

(1.1) 

which, while satisfying the requirements formulated earlier in [6] in relation to the possibility of a correct 
description of the purely shear modes of loss of stability, are simplified to the greatest extent as regards 
the retention of the minimum number of geometrically non-linear terms. The three-dimensional 
equations for the equilibrium of a transversely soft [9] filler in projections onto undeformed axes 

~ (P2°*o) + P%z = O, ~(pZOz*,~) + p%~ = 0 

(P2Ozz) + (sin00°z) + ~0 J = 0 

(1.2) 

correspond to relations (1.1) which have been constructed, in which the components of the stresses 
Cz0,* Oz~,* O0z, o=, referred to the undeformed and deformed axes respectively, are connected by the 
relations 

~U ~V 
(I* = Ooz + (rzz-ff~, o*,p = O,pz + aZZRb p (1-3/ 

Moreover, the Hooke's law relations 

OzO = 2G13Ez0, Oz~ = 2G231~z~, ~zz = E3£zz (1.4) 

hold for the stresses OOz = Oz0, O~z = Gz~, Cyzz within the limits of linearly-elastic deformations by virtue 
of the well-known equalities [9] %0 = %~0 = ~0~ = 0. 
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We will describe the equilibrium of the external layers accompanying their moderate flexure by the 
equations of the classical Kirchhoff-Love theory of shells which, taking into account the strong 
interaction with the filler, can be represented in projections onto the undeformed axes in the form 

~,r(k) S(k) 
f(°k) aT(°k°'~+ etgO(T(°~)- r(k)' + ~ + R o ~ n O  + RP(k)8(k)a*° 0 = -~o~,, sinOOqo V(k) 

~(k) ~T(k) .~(k) 
r(, ) a%, + 2ctg0T~k~ + ~ + _ ,  , ~ = ~ sinOdq) Rp(~)sin0 +Rp(k)8(~)°z~ = 0 

_(,, as'0*' as(, , 
= "ee +I,,~-Rp(~)sinea 0 Rp(~)sinZea(p+RP(k)~(k)Ozz+RP(k)P(k) = 0 

(1.5) 

k = 1,2; 8(1 ) = 1, 8(2 ) = - 1  

The transverse shear and normal stresses in the filler, acting on the external layers at the points of 
the contact surfaces and which are defined in projections onto the undeformed axes and depend on 0, 
% P(k), are denoted by Oz0, Oz~, Ozz, P(k) are the normal components of the external surface load. 

The kinematic conditions for the joining of the external layers to the filler 

= +0 R ,..(k) w (k) W(0, q), P(k)), u(k) + "(k)"(k)"0 = U(0, ~0, P(k)) 

.0 ~ ...(k) = V(O,  ~0, P(k)) ;  k = 1, 2 I) (k) + l(k)O(k)tUq) 
(1.6) 

have to be combined with the equilibrium equations presented above. The notation 

o t(k) h 
t(k) = "~-, P(k) = 1-8(k)h 0, h 0 = 

o(k) aw (k) u(k), . (k) aw (k) v(k) 
= ~-~ t% = sin0a~p- 

has been introduced into Eqs (1.6). 
For moderate flexure of a shell, the shearing forces in the load-bearing layers in relation (1.5) are 

connected in the quadratic approximation, in terms of the internal shear forces T(k)00, T~(k), T0(~) and the 
moments M~'k)oo, M(k)to~ , M ~  / by the relations 

S(0k) • ^ o~M(o~ ) Z,A (k, s l n V ~  + cos0(M(0~ .(k)~ . . . .  0~ _(k) (k) . , = - M~o~o j + ~ + 1 0 0 0 %  s l n v  

. (k)  ~3M(k)  
~ _ ~  v . . .  ~ ~(k)_ (k)^.. t a .~(k) sin0 + 2cos0Mf.k2o+ + ~ + l~otu~o smu 

(1.7) 

and the elasticity relations 

. (k)2 V<lt)Iw(k) aV(k ) . ¢k)2._ 

_ (k)...(k)-] T(t) = B (k)[- au(k) + Or(k)- ctgOv (k) + tu o t% j 
- o ,  ,B ao 

T(k) B~k)Iw(k) av  (k) ...(k)2 . (k){au(k) (k)2 
~°~= + sin0a---~ + ctg0u(k)+ % +v2 L-~  -'+ ~ - / J  

(1.8) 
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fur(k) D(k)[~2w(k) 3U (k) + v(k)(~2w(k) ~W (k) 31) (k) 
= ~ + c t g 0  

""0O - I L'~- ~ 30  1 ~sin203~p2 sin 03¢p 

-,2 (k) 3w(,) 3u(k) 3V(~) ctg0v(k)- lj u( , )  n(k)[-o 0 W 
'"0~ = - ' -q2L"sin0303q~-2ctg 0 3~0 -sin03q~ ~ + 

M(*) n(k)F O2w(/0 3w(k) 3v(/0 ctg0u(k)+ v~k)/32 (W:) 
, ,  = -'-'2 Lsin203-----~2 + ctg0 - ~  sin03q~ 30 o 

ct 0u,k,/] 

au')]] 
)j 

(1.9) 

hold within the limits of the elastic deformations. 
Here 

ow(k).o R(k) ~j t(k) (k) 
--J = (k) (k).' Dj = 

p(k)(1-Vl V 2 ) 

_ o ~(k) n(k).2 
l~(k) Zt(k){Jl2, r~(k) ~'12 t(k) 
.o12 --'-- L.,,12 -- P(k) 3Rp(k) 

B(k).2 j t(k). 

3Rp(k)' 
j = l , 2  

(1.10) 

are the stiffness characteristics of the load-bearing layers. 
After introducing the dimensionless governing parameters ~1,) = B~2)/B}k ) and the differential operators 

(k) Vl _ 2~ L~k?= ~ + c t g O  - , , ,  - ~ c , g  . + - -  
v 2 sin203q~ 2 

(k) 
l ( k )  = V2 3 1-. ¢k) (k). ~ . .  ))ctgO] L'I2 v~sin~3q~Ltv2 + Y2 )b-~- t  t- + v~k 

2, = ~ i ~ l _ '  2 

(1.11) 

: ,  ct./+ 1 : 
22 ---- ~/2 ~ 3 0  s i n 2 0 3 t P  2 

when (1.9) is used, the shearing forces (1.7) will be expressed in terms of the displacements u (k), v(k), 
w (k) of points of the middle surfaces of load-bearing layers by the formulae 

SCok) = D{k)sinO{L{~)(u(k))+ L{l~)(oCk))_(L{~ ) ,?{,) 32 ~(3w(k)~ 
s i -7og2)~ , -a¢ - , , -  

_.,.@)ctgO/w<,) +_(k~ ( , ) .~  1 0 0 0 0  s l a v  
sin203q02[(v I v2 J 

S(~)= D 2 s in0 L21 ( u )  sing&o L, 2 2 00--5 + 

(1.12) 

2 

+ctgtl~-0+z~' 2 -I ~ 21 w ~ + l ~ w ~  smu 
sin 0~¢p _] J 
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2. C E N T R O - S Y M M E T R I C  D E F O R M A T I O N  OF A S H E L L  

If the external pressurep is uniformly distributed, the stress-strain state of the shell under investigation, 
which depends linearly on the external load p, will be described, for centro-symmetric deformation, 
when 

0 
= 0 0 = O, (Y*zz = (Yzz = a z z  u °(k) v °(k) = O, ~z* = °zO = O, ~** = ~z,p 

by the equilibrium equations 

d . 2  o .  :(k) (k) o 
~-~tP ~zz) = O, zz = + T°~p - f f z zRD(k )5 (k )  + P(k)  = O, k = 1, 2 (2.1) 

Here and henceforth, the parameters of this stress-strain state are labelled with additional zero 
superscripts. 

Combining the physical relations 

o d W  ° 
T~OC0 k) : B~k)(1 + Vt(k)')wO(k), T0(k). ~0 = B~k)(1 + V~k))W0(k), 6z z = E3Rd p (2.2) 

with Eqs (2.1), we successively find the integrals 

o qo W o Wo Rq° (2.3) 
~ z z  = -"~, = - p PE3 

where q0 and w0 are constants, which are determined from the contact condition 

w O ( k ) =  wO(p(k)), k = 1, 2 

By satisfying these conditions we can determine the radial stress 

0 E3Po)P(2)." 0(2) wO(l)) 
~zz  = ~ 2RpZho tw (2.4) 

Using relations (2.2) and (2.4), a system of algebraic equations follows from Eqs (2.1), which are 
written in terms of the deflection w oO) and w °(2) 

_ - PP(k)  521 = O, 522 = 1, k = 1 , 2  ( 2 . 5 )  (1 + X(k))w °(k) X(k) WO(3-k )  = --~)2k. ~ ) ,  

~1 D2 

where 

(k) (k). 
V~ k) E3P( l )P (2 ) (1 -V 1 V2 ) 

p.i k)' = l+2Vz)+'k - ~ '  X(k) = o (k) 
vi"  t4n0t(k)/~ 2 ~1, I 

The deflections of the load-bearing layers 

wO(k ) = _ pR P(2 ) ( k -  1 + ~(l)) 
~t(2)n(2), 

1 D2 I , I+x (1 )+X(2 ) )  
(2.6) 

are determined from system (2.5), and the forces in these layers are found from relations (2.2). 
It follows from expressions (2.2) and (2.6) that, in the general case, the forces T0(k) are different from ~ 0 0  

the forces T°(~ k) for the orthotropic materials of the load-bearing layers. It can be shown that they are 
equal to one another when the condition (1 + v(khv (2) (1 + v(khv (2) are satisfied. In the special 1 / 1 = 2 / 2  
case when the materials of the load-bearing layers are isotropic, that is, when v~ k) = v (k) = v (k), E} k) = 
E~ k) = E (k), we have 
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pRP(2)X~)(I +vO)) T~o(02) TO(2) pRP(2)(I +X~)) 
~ 1 )  * * )  2(1 + X~) + X~))( 1 + v(2)) 2(1 + X~)+ X~)) 

where 

X('~) = E3Po)P(2)(1 -v(k)) k = 1, 2 
--- 0 ~(k) ' 
8h0t(k)/~2 

When there is no filler (E3 = 0, )~1) = X~2) = 0), the well-known results 

: '"=o, #? = -~, = . ~  = -pRp(2)/2 

follow from Eqs (2.7). 
According to expression (2.6), for the radial stress (2.4), we have 

(2.7) 

2 
0 PP(2)X2 (2.8) 

(Yzz = (1 + Z(1) + X(2))P 2 

3. T H E  L I N E A R I Z E D  S T A B I L I T Y  E Q U A T I O N S  

To determine the values of p, on reaching which branching of the solution of the composite system of 
non-linear equilibrium equations is possible, we will linearize them in the neighbourhood of the solution 
(2.2), (2.6), (2.8). 

The finearized equifibrium equations for the rifler and their reduction to two-dimensional equations. If 
we assume that, prior to the loss of stability, the shell is stressed but not deformed, then, by virtue of 
the relations U ° = F ° = 0, ~° z = c~°z = 0, the neutral equilibrium equations for the filler take the form 

2 , ~ 2 , 
b--~( p a~e ) + Pae~ = O, ~-~(p a~q,) + pa,~ = 0 

~-~(P (~zz) + (s ine°cO + 29  / = 0 
(3.1) 

Here, unlike relations (1.3). 

o aU : G VP a (u '~  a w  o aU 

o av [ aw p a(v)7  o av 
* : % z  + azz-f i -~ = 023 pRsinOaq) + R ~ , p ) 3  + O~z~-~p Oq)z 

b w  
Ozz = E3 RO p 

(3.2) 

(3.3) 

and or° z is calculated using formula (2.8). 
The functions 

o 
ql q3 ~ (U)  

0 
q2 q3 ~ (V~ 
p~ ~.~: (3.4) 

q3 o .  = + q + q 0 S  

P P P 
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in which qi = qi(O, ~) are functions of integration and 

2 0q~ 
o PPf2)X(2) q = ~ "  + ctg0q I + 

q3 = 1 +XO) +X(2)' 

!for + 0v ) 
S = ctgU+ ~ /  

R~,00 s l n v o l p /  

Oq2 
sin00tp 

(3.6) 

are the integrals of Eqs (3.1). 
The radial displacement in the filler 

• R ['q3 o ) fSdp 
W : Wo(O, qO-~'~3L" ~ + A - q 3 J  , J = j p3 

2p 
(3.7) 

where w0 is still an arbitrary function, is determined during the subsequent integration of Eq (3.3) and 
(3.5). 

By satisfying the kinematic contact conditions along the normal to the surface o from (1.6) we can 
determine the integration functions q3 and Wo, and, substituting them into expression (3.7), we obtain 
the following formula for determining of the buckling in the filler 

-2 2 
W : P(2)(z+h°)w(2)-Po)(z'-h°)wO) qR(z -ho) + 

2hoP 2E3P(l)P(2)p 2 

Z + q~R pO)(~- ho)J(1 ) - p(2)(7. + ho)J(2 ) + 2hoPJ" ~ = ~, 
2hoE3P 

J(k) = J ( 0 ,  tp, P(k)) 

(3.8) 

When Sp -3 < R, the term containing the factor qO can be neglected, with an accuracy O(h2), compared 
with the first term. Then, for W, we will have the simplified formula 

-2 2 W= P(2)(~: +h°)w(2)-p(l)(Z'-h°)w(l) qE(z -ho) 
2hop 2E3Po)p(2)p 2 

(3.9) 

and Ozz will be calculated using the formula 

azz E3P(I)P(2)(w(2)-w(l)) q(.1 1 I 
- + (3.10) 2hp 2 p 3 P(1)"P(2i 

In order to determine the tangential displacements in the filler, we make use of relations (1.4) and 
(3.2), from which the differential equations 

ql R GI3~W q°31 o _ 

qO) 0 (V~ OW 
pZsin0 bop p .  

(3.11) 

follow. Integration of these equations is difficult because of the existence of variable coefficients in front 
of the derivatives with respect to the coordinate P. We shall therefore determine their solution in the 
neighbourhood 

o 
q3 0 P)C(2) = q (3.12) 
--2 = (lzz--" l + z o )  +Z(2) 
P 



A three-layer spherical shell under a uniform external pressure 635 

It can be represented in the form 

U Uo(O ' q~) ql  R G,3 (fWdp] 
= 3G1,3p3 Gl*3a0~.J p 2 ) 

V VO(O ' @) q2 R G23 ~ ( fWdp~ 
-p = 3G23 p ,  3 G~,3sin0~q~k,J p2 j 

(3.13) 

where G~3 = G13 + ~, G~3 = G23 + ~. On introducing the expression for the radial displacement (3.9) 
into equalities (3.3) and satisfying the kinetic matching conditions with respect to the tangential displace- 
ments from (1.6), we arrive, after some reduction, at the two-dimensional differential equations 

--0)(0 2) 0)(01) 03W1 Oq 

I'tl Pt2) P(1) + ' ~ - + f l - g l ~ - ~  = 0 

_ (2) _ (1) OW 2 ~q 
IX2 = w_..~ _ ul_.~ + _ _  + f2 - g2si ~ = 0 P(2) PO) sinO03tp 

(3.14) 

in which 

W i = 
p W(I) - W (2) h * ( w f l ) + w  (2)) hoGi3 

(2) - ~ ( 1 )  - i , h ?  -- 

Po)P(2) Gi~ 

f i = q i R f  2h3°Gi3R 2 3 3 
Gi, 3, gi = ~ -  ~ ,  3 3 ; i = 1,2; f = 2h0(3+h0) / (3plp2)  

3P~3Lii3P(1)P(2) 

Linearization of  the stability equation for the load-bearing layers. Linearizing Eqs (1.5), (1.8) and (1.12) 
in the neighbourhood of the solutions (2.6), (2.7), (2.9), we arrive at the neutral equilibrium equations 
of the external layers which can be represented in terms of the displacements in the form 

( . (k)'~ 7 
f (k) = L(lkl)(u(k)) + LI2( v(k)_(k)x)+ (l+v 1.(k).)~_0+03 1 -  /ctgO/w ` '>- 

V2 J J 

_2 r - . (k) 7.-, (k) 0 (k) Vl 2 OW 
-C(k)[~-~+ctg0~-~-V , -v-~2k)ctg 0J - ~  

32 r. ,k)+ 2T~,))(~O- ctgO) ''') ] _ _ 

C~ k) sin 20a~o 2 [ (vl v2 j 

4 T0(k)"(k)'00 w0 +Rq*(P(k))8(k) -- 0 

Rp(k)B~k) P(k)n~2 , # )  

f (k )  _(k) ,  (k). _(k) .  (k). OW (k) =L21tu )+L22(O )+(l+v~k))sin0O{ p 

r.2 ~ r,v(,) + 2T(2'))~_~2 + 2T~*)+ ctgO~0 

TO(k) ...(k) {p~ t% . Rq*(p(k))8(k ) 
+ B(k) + ~ - 0 

RP(k) 2 P(k)n2 

+ 0 2 ]wCk) + 
sin2OOtp2J 

(3.15) 
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v~')) D--if- + (1 + v~2 t)) ctg Ou(l) + (1 + v (~)' °~ °(') + M~')w ( ' ) -  ~z = k + 2 ] s i ~  

C 2 Jv(2k)(D +2ctgO) ~ D 2 F. (t,) 2~,~t,)>~o+ctgO]u(k) 
- +sin2OD,2L iv2 + + 

D D 

(k) 3 2 ~ )  .~-iDw(k) 
+ rr,,, r , +  2ctgO__~2 + _ ,V~t> + ctg2O>Cb.~O + ctgO>j__~ + 

+ -  2(V(2 ', 2T~*)) ctgO +(1  +V~tO)(1 + 2ctg20)+ ~ 2 w``) + 
sin ~p2 + - sin OOt,o J J 

O) w(2)) 
E3P(I>P(2>(w - 1 Fro(~>(D(O(o~) + COCok)ctgO) + 

+ ~(k) ~(k) 
2hoP(k)t$2 RP(k)B~k)L oo [, D0 

+T°e~ ) o ( o 0  ] qRH(k ) _ O; k = 1,2 
sinOO~oJ _2 , # )  

P(k)°2 

where 

qt(P(k)) = ql -I q°U(O'RtP' p(,)), q~(P(k)) = q2 + q°V(O'RtP' P(k)) 

02 t~k) 2 2 t(k) h0P(k)8(k) 
C(k) = - ' T - '  H(k) = + - -  

3p(k) P(k) Po)P(2) 

(3.16) 

Hence, the stability equations for the shell being considered consist of Eqs (3.14) and (3.15) in which 
the two-dimensional functions u (k), v(k), w(k), ql and q2 are unknowns and the functions U(0, % p(k)) 
and V(0, (p, p(~)) occurring in (3.16) are determined for the conditions for contact of the layers with 
respect to the tangential displacements. 

In the subsequent investigations, it is best to take the functions w (k), o(0 k), co~ l, ql and q2 as unknowns, 
by expressing the tangential displacements in the load-bearing layers in terms of the unknowns which 
have been introduced according to the relations 

u(k) Dw (k) . (k) 1]k) _ Dw (k) o~(k). 
= ---~ff--t% , si-ff~-q)- , , k = 1,2 

Using relations (3.17), Eqs (3.15) can be represented with an accuracy O(C(~)) in the form 

f(o')= ~0(V2+2>+ 1 - q ) ~ ,  - ~ - ~ + I  - 

(3.17) 

(k) 2,,,(k)x ~2 ( ~  + ctg0)lw(t)_ 
- ( 1 - v l  - ;1 Jsin200tp2[0-" ~ 

_o(k) (k) 
_(k). <k). _(k). (k). I00 tO0 Rq*(Pck))8(k ) 

--LII (£0 0 )--LI2((O~o ) +  "1 = 0 
Rp(k)B~k) 2 ,~<k) P(k)D1 
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)] = V +2-(I 1 w (k)- 
"* s i ~  2 ~2 t302 + 

_O(k) (k) Rq~(po0)8(,~ ) #(k) t .(k), .(k)~. (k), 1~0 ~ tD~ + = 0 
-- "-'21 tWO ) --/-'22 ttoq~ ) + -(k) 2 n(k) 

RP(k)/~2 P(k)o2 

~z - "-L-2 ]vw° f O ' ) =  (1 +v~ k)) V 2 + 2 -  1-v~--'~)[~-'~+ 1 w(k)+ 1 V~k) ) ~0 (3.18) 

, .  1} + sin200tp2L(Vz + ~'~2 )0--0 + etg0 t~<0 k) + 

_2 ~ Dr,,, 2 . % 0  2 ctgo~o~ : ]~<k,+ + c ( k ) s i ~ [ t  2 + r2 ~--~- sin20--Ocp2j 

+ wt2)) 5(k)E3Po )Pt2)( w t l ) - 

2hoPtk)B~ k) 

1 V~o(~)(O'o~o ~ - . ~ : ) )  + ~o<k)a ' °~)  1 _ ~ + c tgt t~  o ) qRH(k) - 0 
p2 ,,(k) 

(k)D2 

in which 

V 2 b 2 ~ bz = + ctge + - -  
002 sinZObq) 2 

0 (k) 
q3 ()w .. 0 (k) 

q~'(P(k)) = q, + ~I- ' -~-- - -  t '  -- '(k)fi(k))t~O I (3.19) 

° V bw (k) o (k) q3 - t(k)~(k))0% I q~(P(k)) = q2 + RLRs--]-~0 (1 

and, in relations (3.19), the terms proportional to q0 can be neglected with an accuracy of 1 + 
U(O, % P(k))/R = 1, as can be shown using formulae (2.8) and (2.9). 

Investigation of the composite homogeneous system of differential equations (3.14), (3.18) shows 
that separation of the variables with respect to the angle 0 and q) does not occur in them. Such a 
separation of variables is only possible for a shell with isotropic load-bearing layers an isotropic filler. 

4. M O D E S  OF LOSS OF S T A B I L I T Y  AND C R I T I C A L  L O A D S  F O R  
AN I S O T R O P I C  T H R E E - L A Y E R  S P H E R I C A L  S H E L L  

If the shell is isotropic, that is, the equalities 

E(I k, = E~k, -_. E(k), V]k) = v~k) = v(k)(B]k) = D'2-(k) = B(k)),  GI3 = G23 = G  3 (4.1) 

hold, then, on introducing dimensionless parameters, the required functions and the external load 
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, 2 2 , 2 
3G3 P(1)P(2) G3 ho EaP(I)P(2) fRqk 

K(k ) = 2h0P~k)( 3 + h~)B(k), K = 2 '  (I)(I,) = k '  elk = G--'-f" 3 E3pO)p(2)(3 + h o) 2hop(k)B ( ) 

pg~l)(1 + v 0)) p ( l  + g~)) hoG3 
= ,v* .a. ,v* "tl~ (2) '  G ~  P(l) 2 ( 1  + ~ 1 )  + ~ ) ) ( 1  + V ( 2 ) ) B ( 2 ) '  P 2  = 2 ( 1  + ~(1)  + Z,(2),,., h~ = -  

(4.2) 

where G~ = G 3 + q, the stability equations (3.14) and (3.18), neglecting the terms in relations (3.19) 
which are proportional to q3 °, take the form 

ftk) ~ +L)w J--L'll [tOO ) - - L ' 1 2 i ,  OJ(p )--P(k)COO +K(k)~(k)ql = 0 0 = [ ( V 2  , , .  ( k ) .  ; ( k ) ~ . . . ( k ) ,  7 ( k ) .  _ t k ) .  - (k) 

f(k) ~__~[(V2 + 2)w(k)] 7(k)z...(k)x 7 ( k ) . _  (k) .  ~ _ (k) 
= -- ~21 ~t°O ) -- ~22  [{tl~ ) -- pktO~ + K(k)~(k)q 2 = 0 ~ s i n  

3co(0 k) ctg Oco]k) Oco~k) l ftz k) = ( 1 + V<k))[(V 2 + 2)w tk) 30 si-n'-~¢J + 

+C~k){[(~-~--o+ctgO)V2-ctg2O~]co~o')+ ~(V2-2ctgO,~-~--~co~')}+ 
.Oco (k) Oco(k) . ~ 0 ~ - - t p  

+ ~)(k)(P(k)( W(1)- W ( 2 ) ) +  P ( k ) ( ~  + ctgOCO(O k) + sinOOtp)- 

- Ktk)H(k)(-~'O + ctg0ql + sin0b(pJ = 0 

(2) CO(l) + _ 
COO _ _  ~ [D W(1) - (2) . : g ,  (1) 

[Al = [3(2) P ( I )  [)(1)13(2) 3 0  (2) -- p(1)W -- n o [W + W(2))]  + 

o "l- q l  -- ( ql ctg0 + sin039) = 

. (2) (1) 0 [ p  W(1) _ (2) . , .  ( 1 ) + W ( 2 ) ) ] +  
~ 2  -- otl~° COtP + - PO) w - n o t w  

P(2) P(l) Po)P(2)sin0b(P (2) - 

/c 0 (o i ) o 
+ q2 -  s i ~ . - ~ - - O  + qlctg0 + sin0O(p) = 

(4.3) 

Here, the notation for the operators 

L(k) l l  = V2-v(k) -c tgZ0  - 1 + v  (k) 02 
2 sin2O3(p2 

s i t ' [  3 -V  t*) a =(k) = 3 ,1 + v (k) 0 ~ ctgO) = L21:(k) 
Lt2 2 30 

L(k) 1 - v (~) 3 2 1 + v (k) 
22 = ~ sin~b(p(V + 1 - ctg20) + ~ - -  

02 

sin20092 

has been introduced. These operators are obtained from the operators (1.11) when conditions (4.1) 
are satisfied. 

Instead of the required functions co(- k), co (k), C]k (k = 1, 2), we introduce the new required unknowns 
F(k), ~(k), Q, ~p in accordance with theOrepr~esentations 
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o(0 k ) - 0 #  *> 0¢)(k)  . ( * ) =  ~#*) 
0---0= + sinO0--==~' to) sinOOq) 

0Q 0'¢' , 0Q 0 ',I.' 
q~ = o-o + siffo=oq) q2 = sino3q) 0o 

0¢)(k) 
O0 

(4.4) 

After substituting expressions (4.4) into relations 
we arrive at the equations 

~0 0 V(k) = v( >+si = o, 

(4.3) and some reduction with an accuracy O(C~k)), 

f(k) 0 U (k) ~ = 0 
= s i ~  - - -  V(k) 

2 ) i'<,) V2#k) + f(k) = (V2 + 2 ) w ( k ) _  V2 C(k) ~72V2 F(k) + 
z 1 + v (k) 

(P(k)~(k). (1) (2). K(k)H(k)v20 = 0 
+ 1--~vCk)[w - w  ) 1 + v  (k) ~" 

(4.5) 

0M ON OM ON 
~t 1 = ~ + ~  = 0 ,  ~t 2 = - 0  

sinO~(p bO slnuo~p 

in which 

U (k) = (V  2 + 2)w (k) - (~ 72 4 = I - v(k))F (k) - p(k)F (k) + K(k)8(k)Q 

V(k) 1 - V (k) 2 = "2- ( V  + 2)¢~ (k) + p(k)tYP (k) -- K(k)~(k)~ 

M - F~2) F(1)-+ (P(2) - h*) w(l) - (P(o + h~')w(2) + ( I _ K V 2 ) Q  (4.6) 
P(2) P(l) P(l)P(2) 

~(2) ~(t) 
N -  v~F 

P(2) PO) 

If follows from Eqs (4.5) that the initial system of interconnected differential equations of stability 
(4.3) in the new unknowns decomposes into two independent systems of equations. Since, for all 
unknown functions in the case of a closed spherical shell, conditions for their periodicity with respect 
to the angular coordinate 0 and q0 are formulated instead of boundary conditions, those modes of loss 
of stability which are realized in a shell without the appearance of deflections of the load-bearing layers 
in the perturbed state are described by one of these systems of equations, which has the form 

V (k) = 0, k = 1,2, N = 0 (4.7) 

This follows from an analysis of the expressions for 1/(k) and N from relations (4.6). The modes of loss 
of stability, which are accompanied by deflections of the load-bearing layers in the perturbed state are 
described by the other system of equations 

U (k) = 0, JzfCk) = 0, k = 1,2, M = 0 (4.8) 

which contains the deflections w (k) and the scalar potential function F (k), Q. In the light of the results 
previously obtained in [1, 3], the modes of loss of stability described by Eqs (4.7) should be regarded 
as pure shear modes and the modes which are established by the solution of Eqs (4.8) should be regarded 
as mixed flexural modes. 

Since the boundary conditions in spherical shell are replaced by conditions of periodicity of the 
functions w (k), F (~), dp (k), Q, qJ with respect to the angular coordinates 0 and % the following combinations 
are solutions of Eqs (4.7) and (4.8) 
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F = pm(cosO)(FnmcOSmCp + Fnmsinmcp) (4.9) 

where the function F is understood to be one of those shown above; Fnm and Fnm are constants of 
integration,/~n (cos0) are associated Legendre polynomials of degree n, and m is the number of nodal 
meridians. 

Here, the function F satisfies Legendre's equation 

d2F ~dF + ( . 2  m 2 ) 
+ ctgvd---O LA,. si"~-0 F = 0, 3-z = n(n + 1) (4.10) 

In accordance with properties (4.9) and (4.10), we can change from differential equations (4.7) and 
(4.8), to algebraic equations which have the same form both with respect to Fnm and with respect to 
P,m- To do this, it is sufficient to carry out a formal transformation from w (k), F (k), ~(k), Q, v? to their 
amplitude values w~,  F~,  ~ ,  Qnm, t[Inm or I~(nkm ),/~(nkm ), ~)n(km ), Ohm, ~nm by replacing the operator V 2 by 
the numerical value -3. 2 . 

Shear modes of loss of stability. According to what has been discussed above for the investigation of 
shear modes of loss of stability, we have Eqs (4.7) which, when account is taken of expressions (4.6), 
can be represented in the algebraic form 

I1 - v (k) ._ .2 .  --.---~-( z - I%) + =(k)-I.,.(k) ~. ~ ~,, P Jq'Pnm--rX(k)U(k)Tnm = 0; k = l, 2 

I)(2) (I)(1) 
nm --rim 

- - +  O~nm = 0 
P(2) P(l) 

Note that analogous equations are also obtained in the amplitude values +~m ) , ~nm" 
From the condition for the solutions of these system to be non-trivial, we arrive at an equation for 

determining the critical external pressure p 

~ l - l -v(2) , , ,  a2, K(2) 1 r l - v  0) _ + r ( ' q  + 
P(I)b(2) + p( )LTt &.) P(2)d P--~])J 

+ ( l - V(I))(4 1 - V(2)) (2 _ 3-2)2 _ [! 1 -29(1)V(2))K(I) + (1 - V(1))K(2) 1 . / ( 2 _  3-2) = 0 
2P(2) J 

(4.11) 

An investigation of Eq. (4.11) together with (4.2) shows that the values o fp  are obtained as negative 
quantities when n = 0 (3-n = 0) and are increasing positive quantities as the order of the associated 
functions Pro(cos0) increases. The pressurep attains its smallest value, denoted byp c, when n = 1 and 
its magnitude is found from the relation 

pC 2B(2)( 1 + X~)+  X~z))[Ko)+(1 + X~))(_l + vt2))K<2)l 

. . . . . .  ~ 1)~ P z Loo) x(,)(l+v , ()J 
(4.12) 

At the same time, loss of stability is possible when m = 0 (P~(cos0) = cos0) or when m = 1 
(Pl(cosO) =-sinO).  

In the first case, in accordance with representations (4.4) and (4.9), we have 

em<cosS) '.  = e m { c o s 0 ) + . .  = V,0cosO (4.13) 

since there are no amplitude quantities +]~0 ) and 410 when m = 0. In this case, the complete system of 
differential equations (4.5) will be satisfied when 

w (k) = 0, F (k) = 0, Q = 0 (4.14) 
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Hence, here in the per turbed state, on the basis of relations (3.17), (4.4), (4.13) and (4.14), the 
displacements w (k), u(~)" and a) (k) and the functions q l  and q2 will have the form 

w (k) = 0, u (k) = 0, qi = 0, u(k) = (I)(l~)sin0, q2 = ~ m  sin0 (4.15) 

The mode of loss of stability has been investigated in detail in [3] for a shell with a thin filler. However, 
according to the recent results in [6], the value of critical load obtained needs to be improved. This 
mode of loss of stability occurs by mutual rotation of one of the load-bearing layers with respect to the 
other, with the axis of rotation passing through the centre of the sphere. As the shell transfers from 
the unperturbed state (that is, from the solution (2.6), (2.8), (2.9)) into the perturbed state (that is, 
into the solution (4.15)), this rotation occurs at the initial stage (that is, on infinitesimal initial section 
of the new trajectory) without deformations and bending of the load-bearing layers. 

In addition to the mode of loss of stability (4.13), (4.15), another mode (the case when m = 1) exists, 
which is described by the functions 

(i)(k) (k) - (k) . . = ((I) H cos(p + (bH sin(p)sin0, ~F = -(~F n cos(p + ~ H  sinq))sin0 (4.16) 

In this case, instead of (4.15), we will have 

w (k) O, u (k) (k) . - (k )  = = - ~ l l  smq) + ¢bH cos(p 

= .~(k) . , ,., 
1) (k) ( ( I )~)COSq)  + t-Pll smq))cosu 

q l  = -~P l l s inq)+~l l c° sq  ), q2 = (~Pltc°sq)+~llsin(p) c°s0 

(4.17) 

and, as previously, the value of the critical load is found from Eq. (4.12) using formula (4.2) for Ki, 
which are independent of the initial compression of the filler c]. 

In the case of a shell of symmetrical structure with a thin-walled filler 

= = ---- 0 0 
( P ( l )  = P(2) = 1, v~ I) v (2) v,  E (I) E (2) = E ,  t ( l  ) = t(2 ) = to)  

and the formula 

pC = G3(1 + 2Z) E3(1 - v )  
g { l + h 0 ( l + g ) / [ 4 ( l + 2 x )  ~ 1 } '  ~ = 8 h o t o E  

(4.18) 

follows from relation (4.12). By virtue of the fact that the non-linear terms are retained in relations 
(1.1), this formula fundamentally improves the analogous formula obtained in [3], which only uses the 
linear equations of the theory of elasticity for the filler [8, 9]. 

Mixedflexural mode of  loss of  stability. Flexural modes of loss of stability are described by the system 
of equations (4.8) which, according to relations (4.9) and (4.10), take the form 

2 (k) ( ~ . ~ - l + v  (k) ~ .~(k) (2 - k.)W.m + - p(k))r.m + K(k)6(k)Q.m = 0 

2 2 ~ 
C(k)kn- P(k)IF(k) + q)(k)(5(k)(WO) ...(2). 

. . . .  Wnm ) + 2 (k) ~.] 1+ l+v(k)  ) n m  1- -~v(k )X"nm-  (2 - L,) W,m + 

+ K(k--)H(k-----])a20 = 0 ;  k = 1, 2 
| "t" V (k) "'n~.~nm 

(4.19) 

. . . .  (1) • W(2)  t , , l u r ( l )  W ( 2 ) ]  F(n2)m Pnra~(l) 
P(2)  W n m - -  I"(1) nm-- uO k VVnm + --rim, + - -  

P(1)P(2) P(2) P(l) 
- -  +(1 + K~.2n)Onm = 0 

An analogous system of algebraic equations is also obtained for the amplitudes l~(km ), F (~  and Qnm. 
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Eliminating the amplitudes W(~ (k = 1, 2) and Q,k, f rom system (4,19), we arrive at the following 
algebraic equations 

(A(n 1) (1)7... x~(l) ,~(1) b(l)~ xL.-,(2) 
- - a n  l " ( 1 ) ) r n r n - - I ,  Dn  -- n (2))l"nrn = 0 

L(2)~ x~(1) (A(2) (2) 7., x r~(2) 
(B~ 2) + v n  r ( l ) J r n m  + , - - n  - - a n  l " ( 2 ) ) r n m  = 0 

(4.20) 

where  

A(t,) 2 4 ( _ ~  v ( t ' ) )  w(t,)¢ 
= 1 - v (t')2 + C(t,)X n + to(t,) 1 1- 7 T - 2 _ / -  *~n s(t,) 

~,. - z )  

B(k) ( 1 + v (3-t')'] 
= to( t , )1+ . - c - - -  ! + n t, ~,,,- 2 ) 

a(k) 2 t0(t,) _ 
= Z - 1 - v ( t ' ) + 7 7 - - - -  - K(.k)(li(t ,)+ho-h~) N A.I-2 

bt~ t') = to(t'------!-) - K(t`)(f(k) - h o + h~') 
~.] - 2 

f(t`) = (1 +V(k))i~(k)+ (ho-h~ ' ) (1  +V(k) ) -h0  (~ .n_2 ) ,  2 

2 
K(:) = K(k)H(k)~. n - K(~)(1 + V(k))l~(k) + to(t`)(K(l ) + K(2))8(t)/(~,n 2 - 2) 

2 + K~2n) . P(1)P(2)(~'n- 2)(I +Ko)(P(2)-ho)+K(2)(P(1)-h~) 

Introducing the dimensionless load pa ramete r  

g/ = p(1 + X~))/[2(1 + Z~) + Z~))B(2)I (4.21) 

in accordance with which 

P(I) = X~l)( 1 +VO))?//[(I +X~) )(1 +V(2))]' iV(z) = ~/ 

we obtain, f rom system (4.20), a quadratic equat ion in q. Its solution can be represented  in the form 

ql,2 = An+- ' J -~n-Bn  (4.22) 

where  

(2). (1) (2) ] 1 V (1)_(2) .(2),41) ( l + z ~ ) ) ( l + v  ) .  (2)Al)  b.  B .  ) 
An = ,,, (1) (2)" bn bn )~ + tan ``in - z t a ,  a ,  - (1) (2) an ztn - ° n  t~n X~l)( l+vO))  ] 

( 2 ) . . _ ( 1 ) _ ( 2 )  #,)#.2)) 
( l + x ~ ) ) ( l + v  ) (n  n ,'i n - 

B n = (1).. (1) (2) (1) (2) 
X~l) ( l+v  ) ( a ,  an - b ,  bn ) 

We will denote  the min imum positive value of  the roots of  (4.22) by q, ,  It is found f rom the solution 
of the problem of minimizing the functional 

F/, = min(~/x, t/z) (4.23) 
(n) 
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I f  n ,  is the value o f  n for which a min imum of  the load pa ramete r  ~ ,  is obta ined  then the modes  o f  
loss of  stability will be described by an associated Legendre  funct ion of  degree  n,(pnm,(cosO)) with a 
number  of  nodal  meridians m which varies in the range 0 _< m < n , .  

In this case, the mode  of  loss o f  stability will be described by the functions 

= - , (k )  . . . 
w (k) en~(cosO)(W(~costhq~ + w , ; , s m m c p )  

d ,~ (k) ~ ~(k) . ~ . 
u (k) = -~-6[P~ (cosO)](Fn;nCOSm q) + rnTnslnm(p) 

~ ;n  
m P  n(cosO) .~ ,~ )  . _ =(k) _ . 

V (k) = ~ ( rn~s lnm q) - rn;nCosmrp) 
slr110 

d ~ - 
ql = - ' ~  [Pn ( cos 0) ] (Qnrn c ° s m 9  + Qn~ sin~tp) 

m P  n (cos0)  _ - _ 
q2 = s-~nO (Qn;nSinmcp - Qn,a cosm~0) 

where 0 _< rh _< n , .  

5. N U M E R I C A L  R E S U L T S  A N D  T H E I R  A N A L Y S I S  

The critical loads and the modes of loss of stability corresponding to them were investigated for shells of symmetrical 
structure, when 

~ 0 
v (k) v, E~ t) E, t(t ) t o 

and, consequently, 

2 
E3P( l )P(2) (1-V)  E3P( l )P (2 ) (1 -v  2) C~(k ) = t_...~o 

Z(*)  = Z = 8 h o t o E  , q)(k) = (P = 4 h o t o E  ' 3 p ( ~ )  

, 2 2 3G3 P(I)P(2)( 1 --V 2) 
K(k)  = 2 ; k = 1 , 2  

4 h o t o ( 3  + h o ) E P ( t  ) 

The numerical results were obtained by varying the parameters to, %, 8 = G3/E3, r = ho/to within the following 
limits 

0.01<t0<0.0001, 0 .1<%<5,  1/2.6<~<0.01/2.6, 2 < r < 1 0  (5.1) 

Some of these results for v = 0.3 and to = 0.01 are shown in Table I when % = 1, and in Table 2, in which the 
following notation is introduced: m u = p~/p,, m~ = pC/p,,p~ is the critical pressure in the case of a flexural mode 
found from the solution of problem (4.23) when q3 ~ 0 (the improved solution constructed in this paper) and p ,  
is the critical pressure for a single-layer spherical shell which, in the notation adopted in this paper, is calculated 
using the formula 

-- 8E'02 _ 4t0 B(2).[1 - v  2 

p 2, l-v 2) p,2, 3 

An analysis of the results obtained shows that the tendency for loss of stability by a shear mode becomes stronger 
earlier than for loss of stability by a flexural mode, in particular, when the transverse shear modulus of the filler 
is reduce compared with the modulus E 3 (that is, the anisotropy coefficient 5 = G3/ (2 .6E3)  is reduced; 5 = 1/2.6 
corresponds to an isotropic filler) and, also, when h0 is increased and Z is reduced. Since the value ofp  c is directly 
proportional to the parameter $, m~. becomes smaller than rn~ only for small values of 8 while the value of m u is 
practically independent of 8. As can be seen from Table 2,p~ < pC everywhere in the case of a shell with an isotropic 
filler. The difference between the values of the critical loads for a spherical three-layer shell and a single-layer 
shell (that is, an isolated external load-bearing layer) is not so significant (Table 2) as, for example, in the case of 
three-layer plates. As would be expected, this difference becomes larger when to is reduced and the parameters Z 
and r are increased. 
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Table 1 

2 
4 
6 
8 

10 

t5 = 1/2.6 

u 
m ,  

2.05 
2.31 
2.71 
3.26 
3.98 

0.1/2.6 

u 
m ,  

1.98 
2.03 
2.10 
2.19 
2.29 

0.01/2.6 

u 
m ,  

1.95 
2.00 
2.04 
2.08 
2.12 

Table 2 

0.2 

0.4 

0.6 

0.8 

1 

5 

2 
10 
2 

10 
2 

10 
2 

10 
2 

10 
2 

10 

u 
m ,  

1.42 
1.64 
1.70 
2.23 
1.87 
2.81 
1.98 
3.38 
2.05 
3.92 
2.47 

12.11 

8 =1/2.6 

c 
m ,  

2.599 
14.006 
3.347 

18.231 
4.096 

22.450 
4.844 

26.666 
5.592 

30.879 
20.558 

115.070 

0.1/2.6 0.01/2.6 

u ¢ 
m ,  m ,  

1.42 1.42 
1.45 1.43 
1.68 1.68 
1.73 1.73 
1.84 1.84 
1.93 1.93 
1.93 1.92 
2.18 2.05 
1.98 1.97 
2.29 2.12 
2.10 2.06 
3.26 2.34 

Calculations were also carried out to determine the critical pressure in the case of  a flexural mode of loss of 
stability using formula (4.23) when q0 = 0 (the solution which corresponds to the formulat ion described in [3]). 
Comparison with the values of m u showed that the improved versions of  the theory of three-layer shells constructed 
earlier in [7, 8], under  the assumption that the transverse shear deformations are small when linear kinematic 
relations are used to determine the transverse compression deformation of  the filler, on the basis of  which the 
investigation of flexural modes of loss of stability was carried out in [2, 3], are extremely accurate in describing 
these modes of loss of  stability. Consequently, the use of non-linear kinematic relations, in the case of the filler, 
to determine the deformation e= in the unperturbed state is only necessary for a correct description of the shear 
modes  of loss of  stability for three-layer structures. 

At tent ion is drawn to the fact that, in the case of a small value of the transverse compression parameter  Z, the 
value of m ,  is even less than two (that is, only the upper  load-bearing layer, which is strengthened by the filler, 
loses stability in a mixed flexural mode).  

The effect of having three-layers (that is, rn~ > 2) in the case of a shell is only attained for certain combinations 
of the parameters  ;( and r, and becomes more pronounced as these parameters  increase. It is manifests itself to 
the greatest extent in the case of shells with an isotropic filler (5 = 1/2.6). 
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